Towards the linear arboricity conjecture

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Planar Linear Arboricity Conjecture

The linear arboricity la(G) of a graph G is the minimum number of linear forests (graphs where every connected component is a path) that partition the edges of G. In 1984, Akiyama et al. [1] stated the Linear Arboricity Conjecture (LAC), that the linear arboricity of any simple graph of maximum degree ∆ is either ⌈ ∆ 2 ⌉

متن کامل

Linear Arboricity and Linear k-Arboricity of Regular Graphs

We find upper bounds on the linear k-arboricity of d-regular graphs using a probabilistic argument. For small k these bounds are new. For large k they blend into the known upper bounds on the linear arboricity of regular graphs.

متن کامل

The Linear Arboricity of Graphs

A linear forest is a forest in which each connected component is a path. The linear arboricity la(G) of a graph G is the minimum number of linear forests whose union is the set of all edges of G. The linear arboricity conjecture asserts that for every simple graph G with maximum degree A = A(G), Although this conjecture received a considerable amount of attention, it has been proved only for A ...

متن کامل

A Linear Bound towards the Traceability Conjecture

A digraph is k-traceable if its order is at least k and each of its subdigraphs of order k is traceable. An oriented graph is a digraph without 2-cycles. The 2-traceable oriented graphs are exactly the nontrivial tournaments, so k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known that all tournaments are traceable. We denote by t(k) the smallest integer bigg...

متن کامل

On the linear arboricity of planar graphs

It is proved that the linear arboricity of every 1-planar graph with maximum degree ∆ > 33 is ⌈∆/2⌉.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2020

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2019.08.009